Securing
Passwords

Securing Passwords

1. Hashing
2. Rainbow tables

3. Salts
4. Password cracking tools

NUMBER GAME
Students VS. Professor

Pick a number A Pick a number B

Students win if (A + B) is odd Professor wins if (A + B) is even

Securing Passwords

1. Hashing
2. Rainbow tables

3. Salts
4. Password cracking tools

/etc/passwd

alice:P@sswordl123!:1020:1003::/home/alice:/bin/bash
bob:Setec@str@n@my:l@Zl:1@@3::/home/bobr(bin/bash

I_l_II I IIIIIIII I I |

username password UID GID home directory shell

/etc/passwd

alice:yjOTPxwE]L...: 1020:1003::/home/alice:/bin/bash
bob:yj9T$g6R1Ja...: 1021:1003: : /home/bob:/bin/bash

hashed password

/etc/passwd

alice:x:1020:1003::/home/alice:/bin/bash
bob:x:1021:1003: :/home/bob:/bin/bash

T

hashed password is stored in the file /etc/shadow

/etc/shadow

alice:yjOTHxwE]L...:19741:0:99999:7: : :
bob:yj9T$g6R1Ja...:19741:0:99999:7: : :

I_l_l | | |I|IL|_II L[I

username hashed last min max warning
password age age period

password change

/etc/shadow

alice:yjOTPxwE]L...:19741:0:99999:7: ::
bob:yj9T$g6R1Ja...:19741:0:99999:7: : :

y3j9T$IVXOLU7/myszHCa6reSm90$CCAODX2UpMwiXX0jQaOMbb1 jHAHLQFMKK /bDAVA9SID

hashing hashed password

method

salt

Hashing

Hashing Algorithm

||-||-

Plain Text Hash Function

#blcld
&”(#df

#!sk84#

Hashed Text

10

Encryption

Encryption & Decryption

=G

G~ —

Plain Text Encrypted Text Plain Text

11

Cryptographic hash function

v

ml input: arbitrary-length string

H

cryptographic
hash function

easy to compute

A

hard to invert

h= H(m)i output: fixed-length string

https://people.scs.carleton.ca/~paulv/toolsjewels/TIrevl/ch2-revl.pdf

12

https://people.scs.carleton.ca/~paulv/toolsjewels/TJrev1/ch2-rev1.pdf

f(x) = x mod 1000

Properties of cryptographic hash functions

1. One-Way Property:
- For essentially all possible hash values h
- given a hash value h

- it should be infeasible to find any message M
- suchthat H(m) = h

Properties of cryptographic hash functions

2. Collision resistance:
It should be infeasible to find any pair of distinct inputs m1, m2
suchthat H(m1) = H(m2)

note: here there is free choice of both m1 and m2
When two distinct inputs hash to the same output, we call it a collision

First, if you compute the hash code of the same string
many times, you always get the same value

“P@sswordl123”
1b33¢c2600799c2cledbc54b6a704df85

== 1b33c2600799c2cledbc54b6a704df85

“P@sswordl23” =

16

Second, the hash codes of different inputs are
(usually) very different from one another

“P@sswordl23!” m

1b33c2600799c2cledbc54b6a704df85

== ©32784094001f6a1dc6bf81847245903

“SetecAstronomy” ==

17

Even very similar inputs give very different outputs!

“P@sswordl23”
1b33c2600799c2cledbc54b6a704df85

== e7c55467449ab7738839bav4b8ccb3cl

“P@sswordl24” =

18

How a one-way hash algorithm works

- Construction method called Merkle-Damgard
- Used by algorithms like MD5, SHA-1, and SHA-2

I-lash(M)

Tb Tb T»T O

h: compression function

19

One-way hash commands

Linux utility programs

 Examples:

- md5sum

- sha224sum, sha256sum, sha384sum, sha5l12sum

S mdSsum file.c
919302e20d3885dal26el6cadcec8e8b file.c

S sha256sum file.c
0b2a06a29688... (omitted)...1f0dedd1dl file.c

20

One-way hash commands (continued)

Using the openssl to calculate a hash

$ openssl dgst -sha256 file.c
SHA256 (file.c)= 0b2a06a29688... (omitted)...1f04ed41dl

$ openssl sha256 file.c
SHA256 (file.c)= 0b2a06a29688... (omitted)...1f04ed41dl

$ openssl md5 file.c
MD5 (file.c)= 919302e20d3885dal26el6cadcec8e8b

$ openssl dgst -md5 file.c
MD5 (file.c)= 919302e20d3885dal26el6cadcec8e8b

21

Integrity verification

* (Changing one bit of the original data changes hash value

S echo -n "Hello World" | sha256sum
a591a6d40b£f420404a011733cfb7b190d62¢c65bf0bcda32b57b277d9%9ad9%f146e

S echo -n "Hallo World" | sha256sum
d87774ecdal(052afbh269355d6151chd39946d3felb716ff5becda’lab31lcba’as8

* Usage examples:
* Detect change in system files
 Detect if file downloaded from website is corrupted
e https://dev.mysqgl.com/downloads/mysql/

22

https://dev.mysql.com/downloads/mysql/

Committing a secret without telling it

* One-way property

Disclosing the hash does not disclose the original message
Useful to commit secret without disclosing the secret itself

* Usage Example - Stock Market

Need to make prediction about the stock market about a certain day
Publish the hash of the secret on your website

On the particular day, release the secret
Your audience can verify it against the hash

23

Password Verification

* To login into account, user needs to tell a secret (password)

* (Cannot store the secrets in their plaintext
* Need for:

« Password storage where nobody can know what the password is
If provided with a password, it verified against the stored password

* Solution: one-way hash function
 Example: Linux stores passwords in the /etc/shadow file

alice:yjOTXWE]L...:19741:0:99999:7: ::
bob:yj9T$g6R1Ja..:19741:0:99999:7: : :

24

Storing a hash instead of a password

Cleartext password — !
Hash Function
Hashed password

25

Testing a proposed password against stored

Proposed
cleartext —> P@sswordi23!
Password Storage
password ‘
Hash Function
Hashes don’t match!
yJ9T$JvXOLu7/myszHreSm90$CCA0 y08R$SXwkoQ8tCzyUTc7KBt8KI/$p...

hashes

\ P /
match?
w‘
ACCESS GRANTED T

NUMBER GAME REPLAY

Students VS. Professor
Pick a number A Pick a number B
Hash the number A Hash the number B
Share the hash with Professor Share the hash with Students
Then share the number Then share the number

Students win if (A + B) is odd Professor wins if (A + B) is even

Securing Passwords

1. Hashing

2. Rainbow tables

3. Salts

4. Password cracking tools

Rainbow tables

- Specialized tables used for decrypting hashed passwords
- Compare hashed passwords against precomputed hashed values

- Involves selecting plaintexts, applying hash and generating tables

- Efficiently crack passwords by matching hash values and reversing
the process to find plaintexts

- More efficient than brute force
- but less effective against salted hashes

29

Rainbow table demo

Securing Passwords

1. Hashing
2. Rainbow tables

3. Salts
4. Password cracking tools

/etc/shadow

1. Password field has 3 parts: algorithm used, salt, password hash
2. Salt and password hash are encoded into printable characters
3. Multiple rounds of hash function (slow down brute-force attack)

Salt Password Hash

seed:6wDRrWCQz$isBXp9.9w(omitted)hkxXY/:17372:0:99999:7:::

!

Algorithm (6 means SHA512)

32

Purpose of Salt

* Using salt, same input can result in different hashes

* Password hash = one-way hash rounds
(password || random string)
 Random string is the salt

33

Attacks Prevented by Salt

* Dictionary Attack
« Put candidate words in a dictionary
* Try each against the targeted password hash to find a match

* Rainbow Table Attack
 Precomputed table for reversing cryptographic hash functions

 Why Salt Prevents them?
» If target password is same as precomputed data, the hash will be the

same
« If this property does not hold, all the precomputed data are useless

« Salt destroys that property

34

Securing Passwords

1. Hashing
2. Rainbow tables

3. Salts
4. Password cracking tools

Password cracking strategy

1. Brute force very short passwords

2. Low-hanging fruit
- Dictionary words that are eight characters long

3. Try common passwords
4. Combine words with numbers
5. Combine words with numbers and special characters

