
Securing
Passwords

1

Securing Passwords

1. Hashing
2. Rainbow tables
3. Salts
4. Password cracking tools

2

Students

Pick a number A

Students win if (A + B) is odd

Professor

Pick a number B

Professor wins if (A + B) is even

3

Number Game

vs.

Securing Passwords

1. Hashing
2. Rainbow tables
3. Salts
4. Password cracking tools

4

/etc/passwd

5

alice:P@ssword123!:1020:1003::/home/alice:/bin/bash
bob:Setec@str0n0my:1021:1003::/home/bob:/bin/bash

username password UID GID home directory shell

/etc/passwd

6

alice:yj9T$xwEl…:1020:1003::/home/alice:/bin/bash
bob:yj9T$q6RlJa…:1021:1003::/home/bob:/bin/bash

hashed password

/etc/passwd

7

alice:x:1020:1003::/home/alice:/bin/bash
bob:x:1021:1003::/home/bob:/bin/bash

hashed password is stored in the file /etc/shadow

/etc/shadow

8

alice:yj9T$xwEl…:19741:0:99999:7:::
bob:yj9T$q6RlJa…:19741:0:99999:7:::

hashed
password

last
password
change

min
age

max
age

warning
period

username

/etc/shadow

9

alice:yj9T$xwEl…:19741:0:99999:7:::
bob:yj9T$q6RlJa…:19741:0:99999:7:::

yj9T$JvXOLu7/myszHCa6reSm90$CCAODx2UpMwWXXojQaOMbb1jH4HLQjMKK/bDAVA90JD

hashing
method

salt

hashed password

Hashing

10

Encryption

11

Cryptographic hash function

12
https://people.scs.carleton.ca/~paulv/toolsjewels/TJrev1/ch2-rev1.pdf

https://people.scs.carleton.ca/~paulv/toolsjewels/TJrev1/ch2-rev1.pdf

f(x) = x mod 1000

13

Properties of cryptographic hash functions

1. One-Way Property:
- For essentially all possible hash values h
- given a hash value h
- it should be infeasible to find any message m
- such that H(m) = h

14

Properties of cryptographic hash functions

2. Collision resistance:
- It should be infeasible to find any pair of distinct inputs m1, m2
- such that H(m1) = H(m2)

- note: here there is free choice of both m1 and m2
- When two distinct inputs hash to the same output, we call it a collision

15

16

H
Hash Function

“P@ssword123”

“P@ssword123”

1b33c2600799c2c1edbc54b6a704df85

1b33c2600799c2c1edbc54b6a704df85

First, if you compute the hash code of the same string
many times, you always get the same value

17

H
Hash Function

“P@ssword123!”

“SetecAstronomy”

1b33c2600799c2c1edbc54b6a704df85

e32784094001f6a1dc6bf81847245903

Second, the hash codes of different inputs are
(usually) very different from one another

18

H
Hash Function

“P@ssword123”

“P@ssword124”

1b33c2600799c2c1edbc54b6a704df85

e7c55467449ab7738839ba04b8ccb3c1

Even very similar inputs give very different outputs!

How a one-way hash algorithm works

- Construction method called Merkle–Damgard
- Used by algorithms like MD5, SHA-1, and SHA-2

19

One-way hash commands

Linux utility programs

• Examples:

- md5sum

- sha224sum, sha256sum, sha384sum, sha512sum

20

One-way hash commands (continued)

Using the openssl to calculate a hash

21

Integrity verification

• Changing one bit of the original data changes hash value

• Usage examples:
• Detect change in system files
• Detect if file downloaded from website is corrupted
• https://dev.mysql.com/downloads/mysql/

22

https://dev.mysql.com/downloads/mysql/

Committing a secret without telling it

• One-way property
• Disclosing the hash does not disclose the original message
• Useful to commit secret without disclosing the secret itself

• Usage Example - Stock Market
• Need to make prediction about the stock market about a certain day
• Publish the hash of the secret on your website
• On the particular day, release the secret
• Your audience can verify it against the hash

23

Password Verification

• To login into account, user needs to tell a secret (password)
• Cannot store the secrets in their plaintext
• Need for:

• Password storage where nobody can know what the password is
• If provided with a password, it verified against the stored password

• Solution: one-way hash function
• Example: Linux stores passwords in the /etc/shadow file

24

alice:yj9T$xwEl…:19741:0:99999:7:::
bob:yj9T$q6RlJa…:19741:0:99999:7:::

Storing a hash instead of a password

25

P@ssword123!

Hash Function

yj9T$JvXOLu7/myszHreSm90$CCAO…

Password Storage

Cleartext password

Hashed password

Testing a proposed password against stored

26

Password Storage

Proposed
cleartext
password

Hashes don’t match!

P@ssword123!

Hash Function

yj9T$JvXOLu7/myszHreSm90$CCAO… yo8R$SXwkoQ8tCzyUTc7KBt8KI/$p…

Do the
hashes
match?

Access Denied Access Granted

No Yes

Students

Pick a number A
Hash the number A

Share the hash with Professor
Then share the number

Students win if (A + B) is odd

Professor

Pick a number B
Hash the number B

Share the hash with Students
Then share the number

Professor wins if (A + B) is even

27

Number Game Replay

vs.

Securing Passwords

1. Hashing
2. Rainbow tables
3. Salts
4. Password cracking tools

28

Rainbow tables

- Specialized tables used for decrypting hashed passwords

- Compare hashed passwords against precomputed hashed values

- Involves selecting plaintexts, applying hash and generating tables
- Efficiently crack passwords by matching hash values and reversing

the process to find plaintexts
- More efficient than brute force

- but less effective against salted hashes

29

Rainbow table demo

30

Securing Passwords

1. Hashing
2. Rainbow tables
3. Salts
4. Password cracking tools

31

/etc/shadow

1. Password field has 3 parts: algorithm used, salt, password hash
2. Salt and password hash are encoded into printable characters
3. Multiple rounds of hash function (slow down brute-force attack)

32

Purpose of Salt

• Using salt, same input can result in different hashes
• Password hash = one-way hash rounds

(password || random string)
• Random string is the salt

33

Attacks Prevented by Salt

• Dictionary Attack
• Put candidate words in a dictionary
• Try each against the targeted password hash to find a match

• Rainbow Table Attack
• Precomputed table for reversing cryptographic hash functions

• Why Salt Prevents them?
• If target password is same as precomputed data, the hash will be the

same
• If this property does not hold, all the precomputed data are useless
• Salt destroys that property

34

Securing Passwords

1. Hashing
2. Rainbow tables
3. Salts
4. Password cracking tools

35

Password cracking strategy

1. Brute force very short passwords
2. Low-hanging fruit

- Dictionary words that are eight characters long

3. Try common passwords
4. Combine words with numbers
5. Combine words with numbers and special characters

36

