- 1. Diffie-Hellman Key Exchange
- 2. Digital Signatures
- 3. Passkeys
- 4. Encryption Terminology

- 1. Diffie-Hellman Key Exchange
- 2. Digital Signatures
- 3. Passkeys
- 4. Encryption Terminology

Diffie-Hellman key exchange

 With Diffie-Hellman key exchange, two parties arrive at a common secret key, without passing the common secret key in public

<u>Alice</u>

Public Channel

<u>Bob</u>

Shared Public Key
$$(g,n)$$

Private Key *b*

$$A = g^a mod n$$

$$B = g^b mod n$$

$$key = B^a mod n$$

$$key = A^b mod n$$

Alice and Bob have a shared secret key!

<u>Alice</u>

<u>Public Channel</u>

<u>Bob</u>

Private Key
$$a = 8$$

Shared Public Key
$$(g = 6, n = 31)$$

Private Key
$$b = 11$$

$$A = g^a mod n$$
$$5 = 6^8 mod 31$$

$$B = g^b mod n$$
$$26 = 6^{11} mod 31$$

$$key = B^a mod n$$
$$25 = 26^8 mod 31$$

$$key = A^b mod n$$
$$25 = 5^{11} mod 31$$

Alice and Bob have a shared secret key!

- 1. Diffie-Hellman Key Exchange
- 2. Digital Signatures
- 3. Passkeys
- 4. Encryption Terminology

Digital Signatures

- A digital signature is a mathematical scheme for verifying the authenticity of digital messages or documents
- A valid digital signature on a message gives a recipient confidence that the message came from a sender known to the recipient

PK Encryption:

exponent *e* to encrypt

Digital Signature:

exponent *d* to encrypt

Sign

Verify

- 1. Diffie-Hellman Key Exchange
- 2. Digital Signatures
- 3. Passkeys
- 4. Encryption Terminology

Passkeys

- 1. Diffie-Hellman Key Exchange
- 2. Digital Signatures
- 3. Passkeys
- 4. Encryption Terminology

Encryption at Rest

Encryption in Transit

End-to-End Encryption

Full-Disk Encryption

Ransomware