
Buffer Overflow

1

Buffer Overflows

1. How they work
2. Countermeasures
3. Shellcode

2

Buffer Overflows

1. How they work
2. Countermeasures
3. Shellcode

3

4

Text

Data

BSS

Heap

Stack

High Addresses

Low Addresses

machine code

global
initialized

uninitialized

dynamically
allocated

by the program

automatic
local variables
call-by-value
parameters
call frames

C/C++ Program Memory Layout

5

Text

Data

BSS

Heap

Stack

High Addresses

Low Addresses

machine code

global
initialized

uninitialized

dynamically
allocated

by the program

automatic
local variables
call-by-value
parameters
call frames

6

Text

Data

BSS

Heap

Stack

High Addresses

Low Addresses

machine code

global
initialized

uninitialized

dynamically
allocated

by the program

automatic
local variables
call-by-value
parameters
call frames

7

Text

Data

BSS

Heap

Stack

High Addresses

Low Addresses

machine code

global
initialized

uninitialized

dynamically
allocated

by the program

automatic
local variables
call-by-value
parameters
call frames

8

Text

Data

BSS

Heap

Stack

High Addresses

Low Addresses

machine code

global
initialized

uninitialized

dynamically
allocated

by the program

automatic
local variables
call-by-value
parameters
call frames

9

Text

Data

BSS

Heap

Stack

High Addresses

Low Addresses

Targets for buffer
overflow attacks!

10

Text

Data

BSS

Heap

Stack

High Addresses

Low Addresses

11

main

Call Stack

functionOne

functionTwo
Stack
Frames

consisting of stack frames

12

main

Call Stack

calculateStack
Frames

consisting of stack frames

13

Stack Frame

Arguments

Local Variables

Low Addresses

High Addresses

Frame Pointer

+8

a
+12

b

-4 x

y
-8

Return Address

Old Frame Pointer

14

Arguments

Local Variables

Low Addresses

High Addresses

Arguments

Local Variables

ebp = 0xffffcfb8

ebp = 0xffffcfd8

0xffffcfd8 (Old ebp)

Return Address

Main
Calculate

15

16

Arguments

Local Variables

Low Addresses

High Addresses

Main

Return Address

buffer[0]
buffer[1]
 .
 .
 .
buffer[9]

character buffer

buffer[10]
buffer[11]
buffer[12]
 .
 .
 .
 .
 .
 .

Old Frame Pointer

Attack Buffer

What can attacker do with a buffer overflow?
1. Modify data on the stack

− variables
− return address

2. Crash the program

3. Inject malicious code on the stack
− change the return address to point to this code

4. Change the return address to point somewhere else in the program

5. Change the return address to point somewhere in a library
17

18

Arguments

Local Variables

Low Addresses

High Addresses

Main

buffer[0]
buffer[1]
 .
 .
 .
buffer[9]

character buffer

buffer[10]
buffer[11]
buffer[12]
 .
 .
 .
 .
 .
 .

Evil Code

Start of Evil Code: 0xffffcfc8

0xffffcfc8Return Address
Old Frame Pointer

19

Arguments

Local Variables

Low Addresses

High Addresses

Main

buffer[0]
buffer[1]
 .
 .
 .
buffer[9]

character buffer

buffer[10]
buffer[11]
buffer[12]
 .
 .

 .
 .
 .

Return Address

Attack buffer including payload

Old Frame Pointer

20

Arguments

Local Variables

Low Addresses

High Addresses

Main

buffer[0]
buffer[1]
 .
 .
 .
buffer[9]

character buffer

buffer[10]
buffer[11]
buffer[12]
 .
 .

 .
 .
 .

Return Address

Junk Characters
(bytes)

Old Frame Pointer

Attack Buffer

21

Arguments

Local Variables

Low Addresses

High Addresses

Main

buffer[0]
buffer[1]
 .
 .
 .
buffer[9]

character buffer

buffer[10]
buffer[11]
buffer[12]
 .
 .

 .
 .
 .

Return Address

Attack Buffer

Junk Characters
(bytes)

Evil Code

Old Frame Pointer

22

Arguments

Local Variables

Low Addresses

High Addresses

Main

buffer[0]
buffer[1]
 .
 .
 .
buffer[9]

character buffer

buffer[10]
buffer[11]
buffer[12]
 .
 .

 .
 .
 .

Return Address

Junk Characters
(bytes)

Evil Code

Evil Code Address
Old Frame Pointer

Attack Buffer

23

Arguments

Local Variables

Low Addresses

High Addresses

Main

buffer[0]
buffer[1]
 .
 .
 .
buffer[9]

character buffer

buffer[10]
buffer[11]
buffer[12]
 .
 .
 .
 .
 .
 .

Return Address

Junk Characters
(bytes)

Evil Code

Evil Code Address

Offset

Old Frame Pointer

1. What is the offset
between buffer and
return address?

Attack Buffer

24

Arguments

Local Variables

Low Addresses

High Addresses

Main

buffer[0]
buffer[1]
 .
 .
 .
buffer[9]

buffer

Return Address

Junk Characters
(bytes)

Evil Code

Evil Code Address

Offset

Old Frame Pointer

Attack Buffer

Offset = ebp - buffer + 4

ebp = 0xffffcfb8

Buffer address
 = 0xffffcfae

25

Arguments

Local Variables

Low Addresses

High Addresses

Main

buffer[0]
buffer[1]
 .
 .
 .
buffer[9]

character buffer

buffer[10]
buffer[11]
buffer[12]

 .
 .
 .

Return Address

Junk Characters
(bytes)

Evil Code

Evil Code Address

2. What is the starting
address of our code?

Old Frame Pointer

Attack Buffer

26

Arguments

Local Variables

Low Addresses

High Addresses

Main

buffer[0]
buffer[1]
 .
 .
 .
buffer[9]

character buffer

buffer[10]
buffer[11]
buffer[12]
 .
 .
 .
 .
 .
 .

Return Address

Junk Characters
(bytes)

Evil Code

Evil Code Address
Old Frame Pointer

Create multiple entry points! (NOP Sled)

NOP
NOP
NOP

In the x86 architecture, the NOP instruction number is 0x90

0x90
0x90
0x90

NOP 0x90

Attack Buffer

Problem with zeros in the attack buffer

• In C, the NUL character is a special character with the value zero
used to signify the end of a string

27

Buffer (8 bytes) Overflow

28

29

Exercise:
1. Draw the stack
2. Calculate the offset
3. Show where you would put your evil code and NOPs
4. Insert a return address to run your evil code

The buffer char array is at address 0xAABB0010
The frame pointer (ebp) is currently set to 0XAABB0050

Buffer Overflows

1. How they work
2. Countermeasures
3. Shellcode

30

Countermeasures

1. Developer Safeguards

2. Address Space Layout Randomization (ASLR)

3. Non-Executable Stacks

4. Stack Protector (aka. Stack Canary)

31

Countermeasures

1. Developer Safeguards

2. Address Space Layout Randomization (ASLR)

3. Non-Executable Stacks

4. Stack Protector (aka. Stack Canary)

32

Always check data length

33

Never let user’s set the length

char* strcpy(char* dest, const char* src);
char* strncpy(char* dest, const char* src, size_t n);

char* strcat(char* dest, const char* src);
char* strncat(char* dest, const char* src , size_t n);

char* sprintf(char* str, const char* format, …);
char* snprintf(char* str, size_t size, const char* format, …);

char* gets(char* str);
char* fgets(char* str, int size, FILE* stream);

34

No

Yes

No

Yes

No

Yes

No

Yes

Use a safe libraries

For example, libsafe

üDoes not let a buffer grow past
the old frame pointer

35

Arguments

Local Variables

Low Addresses

High Addresses

Main

buffer[0]
buffer[1]
 .
 .
 .
buffer[9]

buffer

Return Address

Old Frame Pointer

Use a safer programming language

If you have an option, you could select a language
that has protections from buffer overflows

For example, Java
- Automatic bounds checking on all array accesses
- Java Virtual Machine (JVM) throws an ArrayIndexOutOfBoundsException

Countermeasures

1. Developer Safeguards

2. Address Space Layout Randomization (ASLR)

3. Non-Executable Stacks

4. Stack Protector (aka. Stack Canary)

37

Address Space Layout Randomization (ASLR)

1. Limits a buffer overflow
attack once it exists

2. Makes it hard to find return
address and NOP sled code

38

Text

Data

BSS

Heap

Stack

High Addresses

Low Addresses

machine code

global
initialized

uninitialized

dynamically
allocated

by the program

automatic
local variables
call-by-value
parameters
call frames 0xBFFFFFFF

0x08000000

Virtual
Addresses

39

Process
2

Process
1

RAM

Physical
Addresses

Process 1 Process 2

Virtual
Addresses

Paging
0xFF123

Virtual
Addresses

0xFF123

Paging

40

Arguments

Local Variables

Low Addresses

High Addresses

Main

buffer[0]
buffer[1]
 .
 .
 .
buffer[9]

character buffer

buffer[10]
buffer[11]
buffer[12]

 .
 .
 .

Return Address

Junk Characters
(bytes)

Evil Code

Evil Code Address

2. What is the starting
address of our code?

Old Frame Pointer

Attack Buffer

Countermeasures

1. Developer Safeguards

2. Address Space Layout Randomization (ASLR)

3. Non-Executable Stacks

4. Stack Canary

41

Non-Executable Stacks

• Code stored on the stack
can not be run

42

Arguments

Local Variables

Low Addresses

High Addresses

Main

buffer[0]
buffer[1]
 .
 .
 .
buffer[9]

buffer

buffer[10]
buffer[11]
buffer[12]
 .
 .
 .
 .
 .
 .

Evil Code

Old Frame Pointer

Return Address

Does not execute!

Countermeasures

1. Developer Safeguards

2. Address Space Layout Randomization (ASLR)

3. Non-Executable Stacks

4. Stack Protector (aka. Stack Canary)

43

Stack Protector (Canary)

- Mark the stack so that we can tell
if a buffer overflow has occurred

- Put a random number in the
canary spot and if that number
is overwritten stop the program

44

Arguments

Local Variables

Low Addresses

High Addresses

buffer[0]
buffer[1]
 .
 .
 .
buffer[9]

buffer

buffer[10]
buffer[11]
buffer[12]
 .
 .
 .
 .
 .
 .

Return Address

Old Frame Pointer
Canary

Buffer Overflows

1. How they work
2. Countermeasures
3. Shellcode

45

What is a shell?

• A shell is a computer program that exposes an operating system's
services to a human user or other programs
• For example:
• /bin/sh
• /bin/csh
• /bin/bash
• /bin/zsh

46

OS
Kernel

ShellUsers Input

What is shellcode?

A shellcode is a small piece of code used as the payload in
the exploitation of a software vulnerability

- It is called shellcode because it typically starts a command shell
from which the attacker can control the compromised machine

47

Shell code in C

48

49

50

Problems with trying to use C

Shell code in assembly

51

System Call
Parameters
are loaded
into registers

Set: ebx Set: ecx Set: edx

In Linux's x86 system call convention, ebx, ecx, and edx are used
to pass the first, second, and third arguments to the system call

Shell code in assembly

52

Shell code in assembly

53

