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    .
    .
    .
buffer[9]

character buffer

buffer[10]
buffer[11]
buffer[12]
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What can attacker do with a buffer overflow?
1. Modify data on the stack 

− variables
− return address

2. Crash the program

3. Inject malicious code on the stack
− change the return address to point to this code

4. Change the return address to point somewhere else in the program

5. Change the return address to point somewhere in a library
17
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between buffer and 
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Attack Buffer



24

Arguments

Local Variables

Low Addresses

High Addresses

Main

buffer[0]
buffer[1]
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Return Address

Junk Characters 
(bytes)

Evil Code
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Offset

Old Frame Pointer

Attack Buffer

Offset = ebp - buffer + 4

ebp = 0xffffcfb8

Buffer address
 = 0xffffcfae
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    .
    .
    .
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character buffer
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buffer[12]
    .
    .
    .
    .
    .
    .

Return Address

Junk Characters 
(bytes)

Evil Code

Evil Code Address
Old Frame Pointer

Create multiple entry points!  (NOP Sled)

NOP
NOP
NOP

In the x86 architecture, the NOP instruction number is 0x90

0x90
0x90
0x90

NOP 0x90

Attack Buffer



Problem with zeros in the attack buffer

• In C, the NUL character is a special character with the value zero 
used to signify the end of a string
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Exercise:
1. Draw the stack
2. Calculate the offset
3. Show where you would put your evil code and NOPs
4. Insert a return address to run your evil code

The buffer char array is at address 0xAABB0010
The frame pointer (ebp) is currently set to 0XAABB0050
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Countermeasures

1. Developer Safeguards

2. Address Space Layout Randomization (ASLR)

3. Non-Executable Stacks

4. Stack Protector (aka. Stack Canary)
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Always check data length
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Never let user’s set the length

char* strcpy(char* dest, const char* src);
char* strncpy(char* dest, const char* src, size_t n);

char* strcat(char* dest, const char* src);
char* strncat(char* dest, const char* src , size_t n);

char* sprintf(char* str, const char* format, …);
char* snprintf(char* str, size_t size, const char* format, …);

char* gets(char* str);
char* fgets(char* str, int size, FILE* stream);
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Use a safe libraries

For example, libsafe

üDoes not let a buffer grow past 
the old frame pointer

35

Arguments

Local Variables

Low Addresses

High Addresses

Main

buffer[0]
buffer[1]
    .
    .
    .
buffer[9]

buffer

Return Address

Old Frame Pointer



Use a safer programming language

If you have an option, you could select a language 
that has protections from buffer overflows

For example, Java
- Automatic bounds checking on all array accesses
- Java Virtual Machine (JVM) throws an ArrayIndexOutOfBoundsException



Countermeasures

1. Developer Safeguards

2. Address Space Layout Randomization (ASLR)

3. Non-Executable Stacks

4. Stack Protector (aka. Stack Canary)
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Address Space Layout Randomization (ASLR)

1. Limits a buffer overflow 
attack once it exists

2. Makes it hard to find return
address and NOP sled code
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Arguments
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Non-Executable Stacks

• Code stored on the stack 
can not be run
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Stack Protector (Canary)

- Mark the stack so that we can tell
if a buffer overflow has occurred

- Put a random number in the 
canary spot and if that number 
is overwritten stop the program
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What is a shell?

• A shell is a computer program that exposes an operating system's 
services to a human user or other programs
• For example: 
• /bin/sh
• /bin/csh
• /bin/bash
• /bin/zsh

46
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What is shellcode?

A shellcode is a small piece of code used as the payload in 
the exploitation of a software vulnerability

- It is called shellcode because it typically starts a command shell 
from which the attacker can control the compromised machine
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Shell code in C
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Problems with trying to use C



Shell code in assembly
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System Call 
Parameters 
are loaded 
into registers

Set:  ebx Set:  ecx Set:  edx

In Linux's x86 system call convention, ebx, ecx, and edx are used
to pass the first, second, and third arguments to the system call



Shell code in assembly
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Shell code in assembly
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