
Web Security
Basics

1

Web Security Basics

1. Web Architecture
2. Web Server
3. HTTP Protocol
4. Cookies

2

Web Security Goals

Safely browse the web in the face of attackers
Visit a web sites (including malicious ones!)
without incurring harm
1. Site A cannot steal data from your device,

install malware, access camera, etc.
2. Site A cannot affect session on Site B or

eavesdrop on Site B

Attack Models

Malicious Website

Malware Attacker

Malicious External Resource

Network Attacker

Web Security Basics

1. Web Architecture
2. Web Server
3. HTTP Protocol

5

Web Architecture

HTML

• Hypertext Markup Language
• For creating web pages
• Example

CSS: Cascading Style Sheets

• Specify the presentation style
• Separate content from the presentation style
• Example

Dynamic Content

• Angular
• React
• Vue.js
• JavaScript

• AJAX (Asynchronous JavaScript and XML)

JavaScript

• Also known as ECMAScript
• Scripting language for web pages
• Different ways to include JavaScript code

Web Security Basics

1. Web Architecture
2. Web Server
3. HTTP Protocol

11

HTTP Server & Web Application Server

Web Security Basics

1. Web Architecture
2. Web Server
3. HTTP Protocol
4. Cookies

13

HTTP Protocol
Protocol from 1989 that allows fetching resources from a server

- Two messages: request and response

- Stateless protocol beyond a single request + response

Every resource has a uniform resource location (URL):

http://cs334.richmond.edu:80/lectures?lecture=08#slides

scheme domain port path query string fragment id

HTTP Request

Request Body

Request Header

HTTP Method URI: Uniform Resource Identifier HTTP Version

HTTP Request

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=examples

method path version

headers

body
(empty)

HTTP Response

Response Body

Response Header

Response CodeHTTP Version

HTTP Response

HTTP/1.0 200 OK

Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Content-Length: 2543

<html>Some data... announcement! ... </html>

headers

body

status
code

HTTP Request

POST /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: richmond.edu
Referer: http://www.google.com?q=cs334

method path version

headers

body
Class: Computer Security
Organization: University of Richmond

HTTP Methods

GET: Get the resource at the specified URL (does
not accept message body)
POST: Create new resource at URL with payload
PUT: Replace target resource with request payload
PATCH: Update part of the resource
DELETE: Delete the specified URL

HTTP Methods

Not all methods are created equal — some have different security protections
GETs should not change server state
In practice, some servers do perform side effects

- Old browsers don’t support PUT, PATCH, and DELETE
- Most requests with a side affect are POSTs today
- Real method hidden in a header or request body

🙅 Never do…
GET
http://bank.com/transfer?fromAcct=ABC&toAcct=XYZ&amount=1000

HTTP → Website

When you load a site, your web browser
sends a GET request to that website

GET /index.html

richmond.edu

https://richmond.edu

Loading Resources
Root HTML page can include additional resources like images, videos, fonts
After parsing page HTML, your browser requests those additional resources

GET /img/usr.jpg

richmond.edu

richmond.edu

External Resources
There are no restrictions on where you can load resources like
images

Nothing prevents you from including images on a different domain

GET /img/usr.jpg

bank.com

richmond.edu

POST to external
You can also submit forms to any URL similar to how you can load
resources

POST /transfer<form action="bank.com/transfer">
<input type="text" id="from" value="me">

<input type="text" id="to" value="you">

<input type="text" id="amount" value="100">

<input type="submit" value="Submit">

</form>

bank.com

richmond.edu

Javascript
Historically, HTML content was static or generated by the server and returned
to the web browser to simply render to the user

Today, websites also deliver scripts to be run inside of the browser

<button onclick=“alert(“The date is” + Date())”>
Click me to display Date and Time.

</button>

Javascript can make additional web requests, manipulate page,
read browser data, local hardware — exceptionally powerful
today

Document Object Model (DOM)
Javascript can read and modify page by interacting with DOM
• Object Oriented interface for reading/writing page content
• Browser takes HTML -> structured data (DOM)

<p id=“today"></p>

<script>
document.getElementById(‘today').innerHTML = Date()

</script>

iFrames

Beyond loading individual resources,
websites can also load other websites
within their window
• Frame: rigid visible division
• iFrame: floating inline frame

Allows delegating screen area to
content from another source (e.g., ad)

https://a.com

b.com

c.com
a.com

d.com

Browser Execution Model

Each browser window….
- Loads content of root page
- Parses HTML and runs included Javascript
- Fetches additional resources (e.g., images, CSS, Javascript, iframes)
- Responds to events like onClick, onMouseover, onLoad, setTimeout
- Iterate until the page is done loading (which might be never)

Web Security Basics

1. Web Architecture
2. Web Server
3. HTTP Protocol
4. Cookies

30

HTTP is Stateless

HTTP Response
HTTP/1.0 200 OK

Content-Type: text/html

<html>Some data... </html>

HTTP Request
GET /index.html HTTP/1.1

If HTTP is stateless, how do we have website sessions?

HTTP Cookies

HTTP cookie: a small piece of data that a server sends to the web browser
The browser may store and send back in future requests to that site

Session Management
Logins, shopping carts, game scores, or any other session state

Personalization
User preferences, themes, and other settings

Tracking
Recording and analyzing user behavior

Setting Cookie
HTTP Response

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Set-Cookie: trackingID=3272923427328234
Set-Cookie: userID=F3D947C2
Content-Length: 2543

<html>Some data... whatever ... </html>

Sending Cookie
HTTP Request

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Cookie: trackingID=3272923427328234
Cookie: userID=F3D947C2
Referer: http://www.google.com?q=examples

Login Session
GET /loginform HTTP/1.1
cookies: [] HTTP/1.0 200 OK

cookies: []
<html><form>…</form></html>

POST /login HTTP/1.1
cookies: []
username: dbalash
password: Pa$$w0rd123!

HTTP/1.0 200 OK
cookies: [session: e82a7b92]

<html><h1>Login Success</h1></html>

GET /account HTTP/1.1
cookies: [session: e82a7b92]

Browser

Shared Cookie Jar

Both tabs share the same origin and have access to each others' cookies

(1) Tab 1 logins into bank.com and receives a cookie
(2) Tab 2’s requests also send the cookies received by Tab 1 to bank.com

bank.com bank.com

Cookies are always sent

Cookies set be a domain are always sent
for any request to that domain

GET /img/user.jpg

bank.com

bank.com

<h1>Bank Customer</h1>

Cookies are always sent

Cookies set be a domain are always sent
for any request to that domain

GET /img/user.jpg

bank.com

richmond.edu

<h1>Welcome Spiders</h1>

Tracking Using Cookies

Prevent Tracking

• Using anonymous mode in browsing

• Block third-party cookies
• First-party cookies are essential for browsing
• Third-part cookies are mainly used for advertisement, information

collection, etc.

Web Security Basics

1. Web Architecture
2. Web Server
3. HTTP Protocol
4. Cookies
5. JavaScript and Sandboxing

41

Protection Needs

Access Page Data and DOM

Access File System

• JavaScript cannot directly access local file system
• User needs to grant permission via file selection

File selection: grant
permissions by selection

Get the file handlers

