Web Security
SQL Injection

Web Application Architecture

Browser Web Application Server Database

What is SQL?

Language

* A computer language for storing,
manipulating and retrieving data stored In
a relational database

Getting Started With Select

* A SQL database contains a bunch of tables

clients

cats

id

name

owner

Nname

sales

client 1tem

N R
N e
N e
e R
T e
R e

EEEN—
S
N
T N
o
EEEN——

EEEN—
N
B
T N
N
T N

SHALan

Getting Started With Select

* Every SELECT query takes data from those tables and outputs the results

cats

owner name query query output
1 cheddar " owner name
1 daisy | [FRoM cate . 1 checoidar‘
3 buttercup owner = 1 1 daisy
4 fluffy T /
4 Zeus
5 ruby

Getting Started With Select

* Every SELECT query takes data from those tables and outputs the results

cats
owner name ~_query query output

1 cheddar name \ name

1 dai i

aisy i FROM cats > cheddar

3 buttercup owher = 1 daisy

4 Fluffy B !

4 Zeus

5 ruby

Update a Row

* We can use UPDATE to modify an existing row in a table

cats

owner name
1 cheddar
1 daisy
3 buttercup
4 fluftfy
4 Zeus
5 ruby

.. Query
: cats

SET name = ‘paws’
' owner = 3

— e o e e e e S — — e —

cats

owner name
1 cheddar
1 daisy
3 DAWS
4 fluffy
4 Zeus
5 ruby

Insert a Row

* We can use INSERT INTO to insert a new row into a table

cats cats

owner name owner name
1 cheddar | query 1 cheddar

1 daisy | cats | 1 daisy

3 paws —-i\VALUES (6, boots) 3 paws
4 fluffy - 4 fluffy

4 Zeus 4 Zeus

5 ruby 5 ruby

6 boots

SQL Injection

SQL injection is a code injection attack on data-driven

applications, in which malicious SQL statements are inserted into
an entry field for execution

Goals: Change or exfiltrate info from a database

Iéinafjn Idea: Inject code through the parts of a query that you
efine

Web Application Architecture

Browser Web Application Server Database

D o

a | ‘

SQL Injection Example

Slogin = 5 POST['login'];
Spass = $ POST['password'];

isuris Ssgl = "SELECT i1id FROM users
pasver WHERE username = ''Slogin|
Forgot Username / Password?

AND password = 'Spassword'”;

Srows = S$db->executeQuerv (Ssqgl);

—

1f Srs.count > 0 {

Don’t have an account?

SIGN UP NOW

// success

Non-Malicious Input

Slogin = $ POST['login’]; // dbalash
Spass = $ POST['password']; // P@sswlrdl23!

Ssgl = "SELECT id FROM users WHERE uid = ‘$login' AND pwd = ‘$pass'”;

Srows = Sdb->executeQuery(Ssqgl);

1f Srows.count > 0 {
// Success!

Non-Malicious Input

Slogin = $ POST['login’]; // dbalash
Spass = $ POST['password']; // P@sswlrdl23!

dba]ish P@sswﬁr;d123!
Ssgl = "SELECT i1id FROM users WHERE uid = ‘$login' AND pwd = ‘S$pass'”;

Srows = Sdb->executeQuery(Ssqgl);

1f Srows.count > 0 {
// Success!

Bad Input

slogin = S _POST['login’]; // dbalash

Ssgl = "SELECT id FROM users WHERE uid = ‘$Slogin' AND pwd = ‘$pass'”;

Spass = $ POST|['password']l; //

Srows = Sdb->executeQuery(Ssql); // SQL Syntax Error

Malicious Input

Slogin = $ POST['login']; // dbalash —=
Spass = $ POST['password']; // 123

Ssgl = "SELECT id FROM users WHERE uid
[/ "SELECT i1d FROM users WHERE uid

Srows = S$db->executeQuery(Ssqgl); // (No

1f Srows.count > 0 {
// Success!

= ‘Slogin' AND pwd = ‘S$Spass
= ‘dbalash'-- COMMENTED OUT
Error)

V77,

4

No Username Needed!

$login = $ POST['login’]l; // 'or 1=1 --
Spass = $ POST['password']; // 123

Ssgl = "SELECT id FROM users WHERE uid
// "SELECT i1d FROM users WHERE uid

‘Slogin' AND pwd = ‘S$Spass
'"'or 1=1 -- COMMENTED OUT

Srows = Sdb->executeQuerv ($sqgl); // (No Error)

1f Srows.count > 0 {

// Success!

V77,

’

Causing Damage

$login = $ POST[‘login’]; // '; DROP TABLE [users] --
Spass = $ POST['password']; // 123

V77

‘Slogin' AND pwd = ‘Spass'”;

Ssgl = "SELECT id FROM users WHERE uid
// "SELECT id FROM users WHERE uid = ’’; DROP TABLE [users] --

Srows = S$db->executeQuervy($sqgl) ;
// No Error..(and no more users table)

Preventing SQL Injection

Never trust user input (particularly when constructing a command)
Never manually build SQL commands yourself!

Sanitize / Escape user input (like XSS, this is harder than you think!)

There are tools for safely passing user input to databases:
* Parameterized (AKA Prepared) SQL
* ORM (ODbject Relational Mapper) -> uses Prepared SQL internally

Parameterized SQL

Parameterized SQL allows you to send query and arguments separately to server

sgl = “INSERT INTO users (name, emaill) VALUES (?,7?)” \ Values are sent to server
cursor.execute(sqgl, [David Balash', ‘dbalash@richmond.edu']) separately from command.

/ Library doesn’t need to escape

sql = "SELECT * FROM users WHERE email = ?"
cursor.execute (sgl, [‘dbalash@richmond.edu'])

Benefit 1: No need to escape untrusted data — server handles behind the scenes

Benefit 2: Parameterized queries are faster because server caches query plan

Object Relational Mappers

Object Relational Mappers (ORM) provide an interface between native objects
and relational databases.

class User (DBObject) :

~1d = Column(Integer, primary key=True)

name = Column (String (255))

emall = Column (String(Z255), unique=True)
1if name == " main ":

users = User.query(emall=dbalashl@richmond.edu') .all ()

Burp Suite

Burp Suite captures and enables manipulation of all the HTTP/HTTPS traffic between a browser and a web server

GET /account
Host: 127.0.0.1

)0010011001001(
117010101111110(

100010011001001
)11101010111111

