
Web Security 
SQL Injection

1



Web Application Architecture



What is SQL?

•Structured Query Language

•A computer language for storing, 
manipulating and retrieving data stored in 
a relational database



Getting Started With Select
• A SQL database contains a bunch of tables

client item id name owner name
sales clients cats



Getting Started With Select
• Every SELECT query takes data from those tables and outputs the results

owner name

1 cheddar

1 daisy

owner name

1 cheddar

1 daisy

3 buttercup

4 fluffy

4 zeus

5 ruby

query output
cats

SELECT *
FROM cats
WHERE owner = 1

query



Getting Started With Select
• Every SELECT query takes data from those tables and outputs the results

name

cheddar

daisy

owner name

1 cheddar

1 daisy

3 buttercup

4 fluffy

4 zeus

5 ruby

query output
cats

SELECT name
FROM cats
WHERE owner = 1

query



Update a Row
• We can use UPDATE to modify an existing row in a table

owner name

1 cheddar

1 daisy

3 buttercup

4 fluffy

4 zeus

5 ruby

cats

UPDATE cats
SET name = ‘paws’
WHERE owner = 3

query
owner name

1 cheddar

1 daisy

3 paws

4 fluffy

4 zeus

5 ruby

cats



Insert a Row
• We can use INSERT INTO to insert a new row into a table

owner name

1 cheddar

1 daisy

3 paws

4 fluffy

4 zeus

5 ruby

cats

INSERT INTO cats
VALUES (6, boots)

query
owner name

1 cheddar

1 daisy

3 paws

4 fluffy

4 zeus

5 ruby

6 boots

cats



SQL Injection
SQL injection is a code injection attack on data-driven 
applications, in which malicious SQL statements are inserted into 
an entry field for execution

Goals: Change or exfiltrate info from a database

Main idea: Inject code through the parts of a query that you 
define



Web Application Architecture



SQL Injection Example
$login = $_POST['login'];
$pass = $_POST['password']; 

$sql = "SELECT id FROM users 
WHERE username = '$login'
AND password = '$password'”;

$rows = $db->executeQuery($sql);
if $rs.count > 0 {

// success
}



Non-Malicious Input
$login = $_POST['login’]; // dbalash
$pass = $_POST['password']; // P@ssw0rd123!

$sql = "SELECT id FROM users WHERE uid = ‘$login' AND pwd = ‘$pass'”;  

$rows = $db->executeQuery($sql);

if $rows.count > 0 {
// Success!

}



Non-Malicious Input
$login = $_POST['login’]; // dbalash
$pass = $_POST['password']; // P@ssw0rd123!

$sql = "SELECT id FROM users WHERE uid = ‘$login' AND pwd = ‘$pass'”;  

$rows = $db->executeQuery($sql);

if $rows.count > 0 {
// Success!

}

dbalash P@ssw0rd123!



Bad Input
$login = $_POST['login’]; // dbalash

$pass = $_POST['password']; // P@ssw0rd123!'

$sql = "SELECT id FROM users WHERE uid = ‘$login' AND pwd = ‘$pass'”;

$rows = $db->executeQuery($sql); // SQL Syntax Error



Malicious Input
$login = $_POST['login']; // dbalash'--
$pass = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = ‘$login' AND pwd = ‘$pass'”;
//     "SELECT id FROM users WHERE uid = ‘dbalash'-- COMMENTED OUT

$rows = $db->executeQuery($sql); //(No Error)

if $rows.count > 0 {
// Success!

}



No Username Needed!
$login = $_POST['login’]; // 'or 1=1 --
$pass = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = ‘$login' AND pwd = ‘$pass'”;
//     "SELECT id FROM users WHERE uid = ''or 1=1 -- COMMENTED OUT

$rows = $db->executeQuery($sql); // (No Error)

if $rows.count > 0 {
// Success!

}



Causing Damage
$login = $_POST[‘login’]; // '; DROP TABLE [users] --
$pass = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = ‘$login' AND pwd = ‘$pass'”;
//     "SELECT id FROM users WHERE uid = ’’; DROP TABLE [users] --

$rows = $db->executeQuery($sql);
// No Error…(and no more users table) 
if $rs.count > 0 {

// Success!
}



Preventing SQL Injection

Never trust user input (particularly when constructing a command)

Never manually build SQL commands yourself!
Sanitize / Escape user input (like XSS, this is harder than you think!)

There are tools for safely passing user input to databases:

• Parameterized (AKA Prepared) SQL

• ORM (Object Relational Mapper) -> uses Prepared SQL internally 



Parameterized SQL
Parameterized SQL allows you to send query and arguments separately to server

sql = “INSERT INTO users(name, email) VALUES(?,?)”
cursor.execute(sql, [David Balash', ‘dbalash@richmond.edu'])

sql = "SELECT * FROM users WHERE email = ?" 
cursor.execute(sql, [‘dbalash@richmond.edu'])

Benefit 1: No need to escape untrusted data — server handles behind the scenes 

Benefit 2: Parameterized queries are faster because server caches query plan

Values are sent to server 
separately from command. 
Library doesn’t need to escape



Object Relational Mappers 

Object Relational Mappers (ORM) provide an interface between native objects 
and relational databases. 

class User(DBObject):

__id__ = Column(Integer, primary_key=True)
name   = Column(String(255))
email  = Column(String(255), unique=True)

if __name__ == "__main__":
users = User.query(email=dbalash@richmond.edu').all()



Burp Suite captures and enables manipulation of all the HTTP/HTTPS traffic between a browser and a web server

Burp Suite


