Introduction To Networking

What's the Internet?

What's the Internet?

- Network: A set of connected machines that can communicate with each other
 - Machines on the network agree on a **protocol**, a set of rules for communication
- Internet: A global network of computers
 - The web sends data between browsers and servers using the Internet
 - The Internet can be used for more than the web (e.g. SSH)

The Internet

Global network that provides **best-effort** delivery of **packets** between connected hosts

Packet: a structured sequence of bytes

Header: metadata used by network

Payload: user data to be transported

Every host has a unique identifier — IP address

Series of routers receive packets, look at destination address on the header and send it one hop towards the destination IP address

Network Protocols

We define how hosts communicate in published network protocols

Syntax: How communication is structured (e.g., format and order of messages)

Semantics: What communication means. Actions taken on transmit or receipt of message, or when a timer expires. What assumptions can be made.

Example: What bytes contain in each field in a packet header

Internet Analogy: Mail

Building block 1: Something That Moves Data

- The Internet is built on technology that moves bits across space
- Voltages on wires, wireless technology, radio waves, etc.

Building block 1: roads

Building block 2: Apartment Complex

- Using building block 1, we can link people within a local apartment complex
- Forms a local area network (LAN)

Building block 2: apartment complex

Building block 3: Post offices

- A post office connects two or more apartment complexes
- Forms a wide area network

Building block 3: town

Building block 3: The Internet

- Connect the entire world using post offices
- Messages may pass through multiple post offices before reaching destination

Building block 1: wires

Building block 2: local network

Building block 3: the Internet

Layers of abstraction

Layer 3: Connect many local networks to form a global network

Layer 2: Create links in a local area

Layer 1: Move bits across space

- A change in layer 1 implementation (wireless instead of wires) doesn't affect the other layers
- A change in layer 2 protocols doesn't affect the other layers

Protocol Layering

Networks use a stack of protocol layers

- Each layer has different responsibilities.
- Layers define abstraction boundaries

Lower layers provide services to layers above

- Don't care what higher layers do

Higher layers use services of layers below

- Don't worry about how it works

Application Transport Network **Data Link Physical**

Open Systems Interconnection (OSI) Model

```
Application
6.
         Presentation
5.
         Session
4.
         Transport
3.
         Network
         Data link
         Physical
```

Open Systems Interconnection (OSI) Model

Application —

7.	Application
6.	Presentation
5.	Session
4.	Transport
3.	Network
2.	Data link
1.	Physical

Physical

Data Link

How to get packet to the next hop. Transmission of data frames between two nodes connected by a physical link.

Physical

Network

Packet forwarding. How to get a packet to the final destination when there are many hops along the way.

Data Link

How to get packet to the next hop. Transmission of data frames between two nodes connected by a physical link.

Physical

Transport

Allows a client to establish a connection to specific services (e.g., web server on port 80). Provides reliable communication.

Network

Packet forwarding. How to get a packet to the final destination when there are many hops along the way.

Data Link

How to get packet to the next hop. Transmission of data frames between two nodes connected by a physical link.

Physical

Application

Defines how individual applications communicate. For example, **HTTP** defines how browsers send requests to web servers.

Transport

Allows a client to establish a connection to specific services (e.g., web server on port 80). Provides reliable communication.

Network

Packet forwarding. How to get a packet to the final destination when there are many hops along the way.

Data Link

How to get packet to the next hop. Transmission of data frames between two nodes connected by a physical link.

Physical

Protocol Layering

Packet Encapsulation

Protocol N1 can use the services of lower layer protocol N2 A packet P1 of N1 is encapsulated into a packet P2 of N2 The payload of p2 is p1 The control information of p2 is derived from that of p1

Layers of Abstraction and Headers

- . As you move to lower layers, you wrap additional headers around the message
- As you move to higher layers, you peel off headers around the message
- . When sending a message we go from the highest to the lowest layer
- When receiving a message we go from the lowest to highest layer

Layer 5 Header (HTTP)

HTTP Method URI: Uniform Resource Identifier

HTTP Version

Request Header

Request Body

Layer 4 Header (TCP)

31 Source Port (16 bit) Destination Port (16 bit) Sequence number (32 bit) Acknowledgment number (32 bit) Header Length (4bit) CWD ECN-E URG ACK PUSH RST SYN FIN Window Size (16 bit) Reserve (4bit) Checksum (16bit) Urgent Pointer (16bit) Options Data

Ports

Each application on a host is identified by a port number

TCP connection established between port A on host X to port B on host Y Ports are 1–65535 (16 bits)

Some destination port numbers used for specific applications by convention

Common Ports

Port	Application	
80	HTTP (Web)	
443	HTTPS (Web)	
25	SMTP (mail)	
67	DHCP (host config)	
22	SSH (secure shell)	
23	Telnet	

Layer 3 Header (IP)

Version (4 bits)	Header Length (4 bits)	Type of Service (6 bits)	ECN (2 bits)	Total Length (16 bits)				
	Identification (16 bits)			Flags (3 bits)	Fragment Offset (13 bits)			
Time to	Live (8 bits)	Protocol (8 bits)		Header Checksum (16 bits)				
Source Address (32 bits)								
Destination Address (32 bits)								
Options (variable length)								
Data (variable length)								

Layer 2 Header

HTTP TCP IP Ethernet Wires

GET / HTTP/1.1 HTTP TCP IP Ethernet

Wires

HTTP From: Port 1234 To: Port 80 GET / HTTP/1.1 **TCP** IP Ethernet

Wires

HTTP TCP IP Ethernet

Wires

HTTP HTTP **Final destination** From: 1.2.3.4 To: 5.6.7.8 **TCP TCP** From: Port 1234 To: Port 80 **GET / HTTP/1.1** IP IP Ethernet Ethernet Wires Wires

HTTP **HTTP** Address of next hop From: 20:61:84:3a:a9:52 **TCP TCP** To: 6d:36:ff:4a:32:92 From: 1.2.3.4 To: 5.6.7.8 IP IP From: Port 1234 To: Port 80 **GET / HTTP/1.1** Ethernet Ethernet Wires Wires

HTTP **TCP Converted into bits and** transmitted From: 20:61:84:3a:a9:52 IP To: 6d:36:ff:4a:32:92 From: 1.2.3.4 To: 5.6.7.8 Ethernet From: Port 1234 To: Port 80 **GET / HTTP/1.1** Wires

HTTP

IP

Ethernet

Wires

HTTP HTTP **TCP** TCP Received over the physical medium From: 89:8d:33:25:47:24 IP IP To: d5:a9:20:68:e0:80 Notice: The MAC addresses changed because the From: 1.2.3.4 recipient is on a different network To: 5.6.7.8 Ethernet Ethernet From: Port 1234 To: Port 80 **GET / HTTP/1.1** Wires Wires

HTTP

IP

Ethernet

Wires

HTTP

TCP

IP

Ethernet

Wires

HTTP

TCP

IP

Ethernet

Wires

From: 1.2.3.4
To: 5.6.7.8

From: Port 1234
To: Port 80

GET / HTTP/1.1
...

HTTP

TCP

IP

Ethernet

Wires

Example: HTTP Request

HTTP

TCP

IP

Ethernet

Wires

From: Port 1234 To: Port 80

GET / HTTP/1.1

...

HTTP

TCP

IP

Ethernet

Wires

Example: HTTP Request

HTTP

TCP

IP

Ethernet

Wires

GET / HTTP/1.1

HTTP

TCP

IP

Ethernet

Wires

Example: HTTP Request

Internet Protocol (IP)

Internet Protocol (IP) defines what packets that cross the Internet need to look like to be processed by routers

Every host is assigned a unique identifier ("IP Address")

Every packet has an IP header that indicates its sender and receiver

Routers forward packet along to try to get it to the destination host

Rest of the packet should be ignored by the router

- 1. The first part of an Internet address identifies the network on which the host resides
- 2. The second part identifies the particular host on the given network

Host-Number

richmond.edu

- 1. The first part of an Internet address identifies the network on which the host resides
- 2. The second part identifies the particular host on the given network

Network-Number

Host-Number

apple.com

- 1. The first part of an Internet address identifies the network on which the host resides
- 2. The second part identifies the particular host on the given network

Network-Number

Host-Number

- 1. The first part of an Internet address identifies the network on which the host resides
- 2. The second part identifies the particular host on the given network

- 1. The first part of an Internet address identifies the network on which the host resides
- 2. The second part identifies the particular host on the given network

IPv4 Classes

	Public IP Range	Private IP Range	Subnet Mask	# of Networks	# of Hosts per Network
Class	1.0.0.0 to 127.0.0.0	10.0.0.0 to 10.255.255.255	255.0.0.0	126	16,777,214
Class	128.0.0.0 to 191.255.0.0	172.16.0.0 to 172.31.255.255	255.255.0.0	16,382	65,534
Class	192.0.0.0 to 223.255.255.0	192.168.0.0 to 192.168.255.255	255.255.2	2,097,150	254

IPv4 Private Addresses

• Class A Private Range: 10.0.0.0 to 10.255.255.255

• Class B Private Range: 172.16.0.0 to 172.31.255.255

• Class C Private Range: 192.168.0.0 to 192.168.255.255

MAC Address

- Medium Access Control address is a unique identifier assigned to a network interface controller (NIC)
- Assigned by device manufacturers, and are therefore often referred to as the burned-in address, or as an Ethernet hardware address

