Link Layer
MAC & ARP

0SI 5 Layer Model

Application

Transport

Data Link

Defines how individual applications communicate. For example,
HTTP defines how browsers send requests to web servers.

Allows a client to establish a connection to specific services
(e.g., web server on port 80). Provides reliable communication.

Packet forwarding. How to get a packet to the final destination
when there are many hops along the way.

How to get packet to the next hop. Transmission of data
frames between two nodes connected by a physical link.

How do bits get translated into electrical, optical, or radio signals

Protocol Layering

How does Application [DNS }[SSH J [FTP][SMTP }[NNTP][HTTP] Application

structure data? \ / // layer

How do | get to the right service? [UDP J

How do | have a reliable “stream” of data? \ [/
N

TCP] Transport layer

How a does packet final destination? Network layer

How Packets Are Constructed

Application Data

Transport Layer UDP I Data
Network Layer P | ubp | Data
MAC Layer MAC| 1P | uDP Data

e g
LLTLTLTLL

Network

Internet Protocol (IP)

Internet Protocol (IP) defines what packets that cross the Internet need to
look like to be processed by routers

Every host is assigned a unique identifier (“IP Address”)
Every packet has an |IP header that indicates its sender and receiver
Routers forward packet along to try to get it to the destination host

Rest of the packet should be ignored by the router

|IP Addresses

o a2 ‘
gyt o Welcome Daniela 68 =

e o -

B @ ~2 »1 xI|°3 lr]r-

.168.1.65

S5° .l 100% M 1:30 PM

New York

/I 30 'Pr'\flllu,JuIyY ::#:: 87°F

minecEary laN 1
O L B A oom

ASUS

10.16.67.14

B O sarvmtey i C = -

Pzl

192.168.1.42 192.168.1.23

IPv4 Address

Most 172 . 16 254 . 1 Dot-decimal
ignifi notation
sighificant ,‘, . " ’
bit ™, Binary
10101100.00010000.11111110.00000001 numbering

15t Hed 3ed 4Vth
H/—/

32-bit (4 bytes)

Octet's order

IPv4 Address

1. The first part of an Internet address identifies the network on which the host resides

2. The second part identifies the particular host on the given network

NetworkcNumber

richmond.edu

O 8 52 W) https://www.richmond.edu

% UNIVERSITY OF RICHMOND 141 o 166 o 35 o 1@6

ACADEMICS ~ ADMISSION & AID ¥

/ N\

Network Host

IPv4 Address

1. The first part of an Internet address identifies the network on which the host resides

2. The second part identifies the particular host on the given network

NetworkcNumber

apple.com

O E) nttps://www.apple.com

17.253.144.10
MacBook Air / \

Network Host

IPv4 Address

1. The first part of an Internet address identifies the network on which the host resides

2. The second part identifies the particular host on the given network

Network-Number Host-Number

220.86.76.43
/ N

Network Host

IPv4 Address

1. The first part of an Internet address identifies the network on which the host resides

2. The second part identifies the particular host on the given network

Network-Number Host-Number

Subnet Mask

255.255.255.0 220.86.76.43
| |
| / AN

Network number will be this part Network Host

CIDR Scheme
(Classless Inter-Domain Routing)

192.168.60.5/24

|

Indicates that the
first 24 bits are
network ID

m,‘

o
Wélconss Dinietel
O M» ﬁb
M
!

ir -

192 168 1 4

f—l-

,,._._.< ————:aa -- ‘
P SN A 4 r=I-1T -1~ 1 X

_

Subnet

\

45.233.102.19

Dynamic Host Configuration Protocol (DHCP)

SNMSUNG

- T

192 168 1.5

192.168.1.6

172.18.123.6
cmsc334-1

Subnet

Network
172.18.122.0/23

]
y—2
Host M
(Attacker)
172.18.122.11

cmsc334-3

=

Host B

172.18.123.5
cmsc334-2

MAC Address

* Medium Access Control address

IS a unique identifier assigned to
a network interface controller (NIC

* Assigned by device manufacturers,
and are therefore often referred to
as the burned-in address, or as an
Ethernet hardware address

Ethernet

$ 1fconfig
eth@:| flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet!172.18.123.6 netmask |255.255.254.0| broadcast 172.18.123.255

inetb Te80::eaba:64ff:fece:4bdf prefixlen 64 scopeild 0x20<link>
ether |e8:6a:64:ce:4b:df| txqueuelen 1000 (Ethernet)

RX packets 861161 bytes 323755456 (308.7 MiB)

RX errors @ dropped 1 overruns @ frame 0

TX packets 1182988 bytes 1312417683 (1.2 GiB)

TX errors @ dropped @ overruns @ carrier @ collisions 0
device interrupt 17 memory 0xb1100000-b1120000

Subnet

Network
172.18.122.0/23

=
A/
Host A Host B
172.18.123.6 (Attacker) 172.18.123.5
cmsc334-1 172.18.122.11 cMsc334-2

MAC: e8:6a:64:ce:4b:df cmsc334-3

Link Layer

Assumes: Local nodes are physically connected

Task: Transfer bytes between two hosts on the physically connected network

Link Layer: Ethernet

Provides connectivity between hosts on a single Local Area Network

Data is split into ~1500 byte Frames, which are addressed to a device’s
6-byte physical (MAC) address — assigned by manufacturer

No security (confidentiality, authentication, or integrity)

Ethernet

Most common Link Layer Protocol. Let’s you send packets to other local hosts.

80 OO 20 7A 3F 3E 80 00 20 20 3A AE 08 00 IP, ARP, etc. 00 20 20 3A
Destination MAC Address Source MAC Address EtherType Payload CRC Checksum

MAC Header Data
(14 bytes) (46 - 1500 bytes) (4 bytes)

Ethernet Type Il Frame
(64 to 1518 bytes)

EtherType gives layer 3 protocol in payload
0x0800: IPv4
0x08006: ARP
0x86DD: IPv6b

At layer 2 (link layer) packets are called frames

MAC addresses: 6 bytes, universally unigque

Problem

» How does a host know what MAC address their
destination has given an IP address?

ARP: Address Resolution Protocol

ARP Is a Network protocol that lets hosts map |IP addresses
to MAC addresses

Host who needs MAC address M corresponding to IP
address N broadcasts an ARP packet to LAN asking, “who
has IP address N?”

Host that has |IP address N will reply, “IP N is at MAC
address M.”

ARP: Address Resolution Protocol

ARP lets hosts to find each others’ MAC addresses on a local network. For

example, when you need to send packets to the upstream router to reach
Internet hosts

Client: Broadcast (all MACs): Which MAC address has IP 192.168.1.17
Response: | have this |IP address (sent from correct MAC)

No built-in security. Attacker can impersonate a host by faking its identity and
responding to ARP requests or sending gratuitous ARP announcements

ARP Packet

- cthernet || header -
“adhess | addees | 800 ARP Request or ARP Reply Padding| CRG
o C Z 28 0 1
Hardware type (2 bytes) Protocol type (2 bytes)
Hardware address Protocol address | . |
length (1 byte) length (1 byte) ke v St onsg,

source hardware address”®

Source protocol address®

Target hardware address®

Target protocol address®

“Note: The length of the address fields is determined by the corresponding address length fields

ARP Security

Any host on the LAN can send ARP requests and replies: any host can claim
to be another host on the local network!

This is called ARP spoofing

This allows any host X to force |P traffic between any two other hosts A and B
to flow through X

Claim Na is at attacker’'s MAC address Mx
Claim NB is at attacker’'s MAC address Mx
Re-send traffic addressed to Na to Ma, and vice versa

ARP Request/Reply

10.9.0.5 10.9.0.6 10.9.0.7
E] E] ARP Reply E]
EZTTTTI LSS EZTTITIRN 10.9.0.7 is at EZTTITISN

02:42:0a:09:00:07

.....................................

'-- LA K B K N J

ARP Request (broadcast): who-has 10.9.0.7? tell 10.9.0.5

Send ARP Request: Example 1

ping 10.9.0.6 from 10.9.0.5

// On 10.9.0.5

tcpdump -i ethO0 -n

03:10:44.656336 ARP, Request who-has 10.9.0.5 tell 10.9.0.6,
03:10:44.656362 ARP, Reply 10.9.0.5 1s—at 02:42:0a:09:00:05,
03:10:44.656382 IP 10.9.0.6 > 10.9.0.5: ICMP echo request,
03:10:44.656392 IP 10.9.0.5 > 10.9.0.6: ICMP echo reply,

ARP Cache

¥ arp -n empty cache
F e ping 9076

PING 10.9.0.6 (10.9.0.6) 56(84) bytes of data.
64 bytes from 10.9.0.6: i1cmp_seg=1 ttl=64 time=0.138 ms

arp -n

Address HWtype HWaddress Flags Mask Iface

1) S (NG ether ()20 422 =it) 5 =S e 06 & ethO
* Cached MAC address

ARP Cache Poisoning

* Spoof ARP Messages
* Request
* Reply
* Gratuitous message
* Spoofed message might be cached by the victim

* Which type of message will be cached depends on OS
Implementation

Constructing ARP Message

Construct ARP packet Fields of ARP and Ether Class
#!/usr/bin/python3 >>> 15 (ARP)
hwtype : XShortField
. ptype : XShortEnumField
from scapy.all import * hwlen . FieldLenField
plen : FieldLenField
E = Ether() op : ShortEnumField
A = ARP() hwsrc : MultipleTypeField
- pPSIrc : MultipleTypeField
hwdst : MultipleTypeField
pkt = E/A pdst : MultipleTypeField
>>> |s(Ether)
sendp(pkt) dst : DestMACField
SIrc : SourceMACField

type : XShortEnumField

Spoof ARP Request/Reply: Code
Skeleton

target IP = "10.9.0.5" victim: 10.9.0.5
target MAC = "02:42:0a:09:00:05"
goal: map 10.9.0.99 to aa:bb:cc:dd:ee:ff
fake IP = "10.9.0.99"
fake MAC = "aa:bb:cc:dd:ee:ff"
Construct the Ether header : :
Bit O '
ether = Ether() ! Bit 16 Bit 31
ether.dst = Hardware Type (1) Protocol Type (0x0800)
ether.src = _
Construct the ARP packet MACaadless | IP address Operation
onstruc : packe lenoth (6 .
arp = ARP() ength (6) | length(4) | Bit 47
Sender MAC Address (6 bytes)
arp.hwsrc =
arp.psrc = %
Q Sender IP Address (4 bytes)
arp.hwdst = §'<
arp.pdst = S Target MAC Address (6 bytes)
(O
arp.op =1
| Target IP Address (4 bytes)

frame = ether/arp
sendp(frame)

Spoofing Gratuitous Message

* Special type of ARP message

e I[P fake = "10.9.0.99"
ether = Ether(src="aa:bb:cc:dd:ee:ff", dst="ff:ff:ff:ff:£ff£:££")
arp = ARP (psrc=IP_fake, hwsrc="aa:bb:cc:dd:ee:ff",

pdst=IP_fake, hwdst="ff:ff:ff:ff:ff:££t")

