
Denial of Service
Attacks (DoS)

1

Denial of Service (DoS) Attacks

Goal: take large service/network/org offline by overwhelming it
with network traffic such that they can’t process real requests

How: find mechanism where attacker doesn’t spend a lot of
effort, but requests are difficult/expensive for victim to process

Types of Attacks

DoS Bug: design flaw that allows one machine to disrupt a
service. Generally a protocol asymmetry, e.g., easy to send
request, difficult to create response. Or requires server state.

DoS Flood: control a large number of requests from a botnet or
other machines you control

DoS Opportunities at Every Layer

Link Layer: send too much traffic for switches/routers to handle

TCP/UDP: require servers to maintain large number of
concurrent connections or state

Application Layer: require servers to perform expensive queries
or cryptographic operations

Distributed DoS (DDos)

Incoming traffic flooding the victim originates
from many different sources

Botnet

IPv4 Header
Instruct routers and hosts what to do with a packet
All values are filled in by the sending host

Ethernet

At layer 2 (link layer) packets are called frames

MAC addresses: 6 bytes, universally unique

EtherType gives layer 3 protocol in payload
0x0800: IPv4
0x0806: ARP
0x86DD: IPv6

Most common Link Layer Protocol. Let’s you send packets to other local hosts.

From Packets to Streams
Most applications want a stream of bytes delivered reliably and
in-order between applications on different hosts

Transmission Control Protocol (TCP) provides…
 - Connection-oriented protocol with explicit setup/teardown
 - Reliable in-order byte stream
 - Congestion control

Despite IP packets being dropped, re-ordered, and duplicated

TCP Sequence Numbers
Two data streams in a TCP session, one in each direction

Bytes in data stream numbered with a 32-bit sequence number

Every packet has sequence number that indicates where data belongs

Receiver sends acknowledgement number that indicates data received

TCP Packet

TCP Three Way Handshake

TCP Handshake

SYN Floods

SYN Floods

Core Problem

Problem: server commits resources (memory) before confirming
identify of the client (when client responds)

Bad Solution:
 - Increase backlog queue size
 - Decrease timeout

Real Solution: Avoid state until 3-way handshake completes

SYN Cookies
Idea: Instead of storing SNc and SNs…

send a cookie back to the client.

L = MACkey (SAddr, SPort, DAddr, DPort, SNC, T)

 key: picked at random during boot

T = 5-bit counter incremented every 64 secs.
SNs = (T || mss || L)

Honest client sends ACK (AN=SNs , SN=SNC+1)

 Server allocates space for socket only if valid SNs Server does not save state
(loses TCP options)

Moving Up Stack: GET Floods
Command bot army to:
 * Complete real TCP connection
 * Complete TLS Handshake
 * GET large image or other content

Will bypass flood protections…. but attacker can no longer use
random source IPs

Victim site can block or rate limit bots

